# Some 2-groups from the view of Hilbert-Poincaré polynomials of $K(2)^{*}(B G)$ 

Malkhaz Bakuradze ${ }^{1}$ and Natia Gachechiladze ${ }^{2 *}$<br>Iv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences<br>E-mail: malkhaz.bakuradze@tsu.ge ${ }^{1}$, natia.gachechiladze@tsu.ge ${ }^{2}$


#### Abstract

In this note we analyze Morava K-theory rings of classifying spaces of some groups of order 32 via Hilbert-Poincaré polynomials.


2010 Mathematics Subject Classification. 55N20. 55R12, 55R40
Keywords. Hilbert-Poincaré polynomial, Morava $K$-theory.

## 1 Preliminaries

Let $R=\oplus_{i} R_{i}$ be a $\mathbb{N}$-graded $k$-algebra, all $R_{i}$ be vector spaces over a field $k$. Then the series $H P(R, t)=\sum_{i} \operatorname{dim}_{k} R_{i} t^{i}$ is called the Hilbert-Poincaré series of $R$.

If $R$ is generated by $h$ homogeneous elements of positive degrees $d_{1}, \cdots, d_{h}$, then the sum of the Hilbert-Poincaré series is a rational fraction

$$
H P(R, t)=\frac{Q(t)}{\prod_{i=1}^{h}\left(1-t^{d_{i}}\right)},
$$

where $Q$ is a polynomial with integer coefficients.
In this paper we analyze the Morava $K$-theory rings $K(2)^{*}(B G)$ at 2 of some groups of order 32. In each example the ring $K(2)^{*}(B G)$ is presented as a quotient of a polynomial ring $K(s)^{*}\left[x_{1}, x_{2}, \cdots, x_{m}\right]$ by an ideal $I$ generated by explicit polynomials. In this situation the naive definition of $H P(t)$ does not work as there are the elements of negative degree in the ring of coefficients $K(2)^{*}$, the graded field $F_{2}\left[v_{2}, v_{2}^{-1}\right]$, with $\left|v_{2}\right|=-6$. Let degree of $K(2)^{*}$ be zero. Then the relations ideal $I$ is not homogeneous with respect to variables $x_{1}, \ldots, x_{n}$, hence the quotient ring is not graded (but filtered) with respect to cohomological degree. One can replace the ideal $I$ by some homogeneous ideal to reduce the definition to graded algebra case and measure how strong is the Hilbert-Poincaré polynomial in distinguishing some $K(2)^{*}(B G)$ 's.

We use the following definitions of [11]. Let $I$ be an ideal of a polynomial ring $k\left[x_{1}, \cdots, x_{n}\right]$ over a field $k$, and let $>$ be a global monomial ordering. For instance
(i) Graded reverse lexicographical ordering $>_{d p}$ (also denoted by degrevlex):

$$
\begin{aligned}
x^{\alpha}>_{d p} x^{\beta} \Leftrightarrow & \operatorname{deg} x^{\alpha}>\operatorname{deg} x^{\beta} \\
& \text { or } \operatorname{deg} x^{\alpha}=\operatorname{deg} x^{\beta} \text { and } \exists 1 \leq i \leq n, \\
& \alpha_{n}=\beta_{n}, \cdots, \alpha_{i+1}=\beta_{i+1}, \alpha_{i}<\beta_{i} .
\end{aligned}
$$

[^0](ii) Graded lexicographical ordering $>_{D p}$ (also denoted by deglex):
\[

$$
\begin{aligned}
x^{\alpha}>_{D p} x^{\beta} \Leftrightarrow & \operatorname{deg} x^{\alpha}>\operatorname{deg} x^{\beta} \\
& \text { or } \operatorname{deg} x^{\alpha}=\operatorname{deg} x^{\beta} \text { and } \exists 1 \leq i \leq n, \\
& \alpha_{1}=\beta_{1}, \cdots, \alpha_{i-1}=\beta_{i-1}, \alpha_{i}>\beta_{i} .
\end{aligned}
$$
\]

Given a vector $w=\left(w_{1}, \cdots, w_{n}\right)$ of integers, we define a weighted degree of $x^{\alpha}$ by

$$
w \operatorname{deg}\left(x^{\alpha}\right):=w_{1} \alpha_{1}+\cdots w_{n} \alpha_{n}
$$

that is, the variable $x_{i}$ has degree $w_{i}$. For a polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ we define thee weighted degree,

$$
w \operatorname{deg}(f):=\max \left\{w \operatorname{deg}\left(x^{\alpha}\right) \mid a_{\alpha} \neq 0\right\} .
$$

Using the weighted degree in (i), respectively in (ii), with all $w_{i}>0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering, $w_{p}\left(w_{1}, \cdots, w_{n}\right)$, respectively the lexicographical ordering, $W_{p}\left(w_{1}, \cdots, w_{n}\right)$.

For $k\left[x_{1}, \cdots, x_{n}\right] / I$, a filtered algebra, the Hilbert-Poincaré series w.r.t $>$ is defined as follows. Replace $I$ by its leading ideal $L(I)$ generated by leading terms of the Gröbner basis of $I$. Then the ring $k\left[x_{1}, \cdots, x_{n}\right] / L(I)$ is a graded ring. By definition

$$
H P\left(t, k\left[x_{1}, \cdots, x_{n}\right] / I\right)=H P\left(t, k\left[x_{1}, \cdots, x_{n}\right] / L(I)\right) \text { w.r.t. }>.
$$

Below, we compute the Hirbert-Poincaré series $H P(t)$ for $K(2)^{*}(B G)$ for some groups $G$ with $|G|=32$. In particular, there are groups $G$ such that the $K(2)$-Euler characteristics $\chi_{2,2}(G)$ are same but $H P(t)$ are different.

## 2 Hilbert-Poincaŕe polynomials

Note that in the case of a finite group $G$ the ring $K(s)^{*}(B G)$ is finite dimensional vector space over $K(s)^{*}(p t)$, so that the Hilbert-Poincaré series we defined is the polynomial. There exist 51 non-isomorphic groups of order 32. In the monograph [8] these groups are numbered by $1, \cdots, 51$. Some of these groups are classical and named. We consider the following examples

$$
\begin{aligned}
& G_{34}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=\mathbf{c}^{2}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c a c}=\mathbf{a}^{-1}, \mathbf{c b c}=\mathbf{b}^{-1}\right\rangle, \\
& G_{35}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c}^{2}=\mathbf{a}^{2}, \mathbf{c a c}^{-1}=\mathbf{a}^{-1}, \mathbf{c b c}^{-1}=\mathbf{b}^{-1}\right\rangle . \\
& G_{36}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=\mathbf{c}^{2}=[\mathbf{b}, \mathbf{c}]=1, \mathbf{a}^{-1} \mathbf{b} \mathbf{a}=\mathbf{b}^{-1}, \mathbf{c a c}=\mathbf{a}^{-1}\right\rangle, \\
& G_{37}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{c}^{2}=\mathbf{d}^{2}=[\mathbf{b}, \mathbf{c}]=1, \mathbf{d}=[\mathbf{a}, \mathbf{c}], \mathbf{b}^{2}=\mathbf{a}^{2}, \mathbf{b a b}^{-1}=\mathbf{a}^{-1}\right\rangle, \\
& G_{38}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{2}=\mathbf{c}^{4}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c a c}^{-1}=\mathbf{a c}^{2}, \mathbf{c b c}^{-1}=\mathbf{a}^{2} \mathbf{b}\right\rangle, \\
& G_{39}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=\mathbf{c}^{2}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c a c}=\mathbf{a}^{3}, \mathbf{c b c}=\mathbf{a}^{2} \mathbf{b}^{3}\right\rangle, \\
& G_{40}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=1, \mathbf{c}^{2}=\mathbf{b}^{2},[\mathbf{a}, \mathbf{b}]=1, \mathbf{c}^{-1} \mathbf{a c}=\mathbf{a}^{3}, \mathbf{c}^{-1} \mathbf{b} \mathbf{c}=\mathbf{a}^{2} \mathbf{b}^{3}\right\rangle, \\
& G_{41}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=\mathbf{c}^{2}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c a c}=\mathbf{a}^{3} \mathbf{b}^{2}, \mathbf{c b c}=\mathbf{a}^{2} \mathbf{b}\right\rangle, \\
& D=\left\langle\mathbf{a}, \mathbf{b}, \mid \mathbf{a}^{16}=1, \mathbf{b}^{2}=1, \mathbf{b a b}^{-1}=\mathbf{a}^{-1}\right\rangle \text {, the dihedral group, } \\
& Q=\left\langle\mathbf{a}, \mathbf{b}, \mid \mathbf{a}^{16}=1, \mathbf{b}^{2}=\mathbf{a}^{8}, \mathbf{b a b}^{-1}=\mathbf{a}^{-1}\right\rangle \text {, the generalized quaternion group, } \\
& S D=\left\langle\mathbf{a}, \mathbf{b}, \mid \mathbf{a}^{16}=1, \mathbf{b}^{2}=1, \mathbf{b} \mathbf{b}^{-1}=\mathbf{a}^{7}\right\rangle \text {, the semi-dihedral group, } \\
& Q D=\left\langle\mathbf{a}, \mathbf{b}, \mid \mathbf{a}^{16}=\mathbf{b}^{2}=1, \mathbf{b a b}^{-1}=\mathbf{a}^{9}\right\rangle \text {, the quasi-dihedral group. }
\end{aligned}
$$

Explicit calculations of Morava $K(s)^{*}(B G)$ rings for the groups of order 32 are scattered in the literature (see the references [1-7], [9-14]). For ease of presentation we set $s=2, v_{2}=v$ and discuss $K(2)^{*}(B G)$ for the twelve groups defined above. It is proved in [4], [5] that for the groups $G_{34}, \cdots G_{41}$ the ring $K(s)^{*}(B G)$ is the quotient of a polynomial ring in 6 variables over the field $K(s)^{*}(p t)=F_{2}\left[v_{s}, v_{s}^{-1}\right]$ by an ideal generated by 16 explicit polynomials (see Proposition 2.1).

Let $\chi_{s, 2}$ be $K(s)^{*}$-Euler-characteristic of $G$, the difference between the $K(s)^{*}$-ranks of the evendimensional and the odd-dimensional part of $K(s)^{*}(B G)$. It is proved in [10] that $K(s)^{\text {odd }}(B G)$ turns out to be trivial for all groups of order 32. It follows $\chi_{s, 2}=\operatorname{rank}_{K(s)^{*}}\left(K(s)^{*}(B G)\right)$ for the groups we are considering. The latter can be calculated [9] in terms of abelian subgroups of $G$ and Möbius function as follows

$$
\begin{equation*}
\chi_{s, 2}=\sum_{A<G} \frac{|A|}{|G|} \mu_{G}(A) \chi_{s, 2}(A), \tag{1}
\end{equation*}
$$

where the sum is over all abelian subgroups $A<G$ and $\mu_{G}$ is a Möbius function defined recursively by

$$
\sum_{A<A^{\prime}} \mu_{G}\left(A^{\prime}\right)=1,
$$

where the sum is over all abelian subgroups $A^{\prime}<G$ which contain $A$. (In particular, $\mu_{G}(A)=1$ when $A$ is maximal.)

For our examples these calculations are known by Brunetti [7] and Schuster [10]

$$
\chi_{2,2}(G)=\left\{\begin{array}{l}
184 \text { for } G=G_{34}, \cdots, G_{41}  \tag{2}\\
142 \text { for } G=D, Q, S D \\
352 \text { for } G=Q D
\end{array}\right.
$$

One can define the Poincaré polynomial $P(t)$ of $G$ by using the cyclical gradings of $K(s)^{*}$ modules: recall the Morava $K$-theory is a periodic cohomology theory, the coefficient ring $K(s)^{*}(p t)$ is the graded field $F_{2}\left[v_{s}, v_{s}^{-1}\right]$, with $\left|v_{s}\right|=-2\left(2^{s}-1\right)$. Therefore as $K(s)^{*}$-module $K(s)^{*}(B G)$ is periodically graded. For $s=2$, the unit $v_{2}$ is of degree -6 and assigning degrees 0,2 , or 4 to each element of $K(2)^{*}(B G)$, the Poincaré polynomial of finite group $G$ is defined as

$$
\begin{equation*}
P(t)=1+c_{0} t^{0}+c_{2} t^{2}+c_{4} t^{4} \tag{3}
\end{equation*}
$$

where $c_{i}=\operatorname{rank}_{k(2)^{*}} K(2)^{i} \bmod 6$.
One immediate consequence of our results (the corollaries 2.4, 2.5 and 2.6) is the following

$$
P(t)=\left\{\begin{array}{l}
1+61\left(1+t^{2}+t^{4}\right) \text { for } G=G_{34}, \cdots, G_{41}  \tag{4}\\
1+47\left(1+t^{2}+t^{4}\right) \text { for } G=D, Q, S D \\
1+117\left(1+t^{2}+t^{4}\right) \text { for } G=Q D
\end{array}\right.
$$

Actually (4) is easily predicted: it says that the for the groups under consideration the elements of $K(2)^{*}(B G)$ are equally distributed in dimensions $0,2,4$ w.r.t the cyclic grading. Surely this was already known to N. Yagita. On the other hand the sum of all coefficients equals $\chi_{2,2}$ in (2).

One can conclude that naive Poincaré series $P(t)$ w.r.t cyclic grading of $K(2)^{*}(B G)$ can't see the difference between the groups in (4) with equal $K(2)^{*}$-Euler characteristics. Therefore we will ignore the cyclic grading.

We are particularly interesting in issues related to the comparison of the ring structures. Namely, suppose that for groups $G_{1}$ and $G_{2}$ the corresponding Morava rings are presented in terms of generators and relations as

$$
R_{i} \equiv K(s)^{*}\left(B G_{i}\right)=K(s)^{*}\left[x_{1}, \cdots, x_{n}\right] / I_{i} .
$$

Then one can ask how "close" the ring structures in $R_{1}$ and $R_{2}$ are? To see the difference in the ring structures we need the Hilbert-Poincaré series defined above.

For instance in Corollary 2.6 we fix a monomial ordering of the generators of Morava rings and compute the corresponding series $H P(t)$ for the groups $G_{34}, G_{35}, G_{39}, G_{40}$ and $G_{36}, G_{37}, G_{38}, G_{41}$ respectively.

We use SINGULAR code hilb [11]. It computes the Hilbert series $Q(t)$ and the Hilbert-Poincaré polynomials $H P(t)=Q(t) / \Pi\left(1-t^{w_{i}}\right)$ defined above. If a weight vector $w$ is given, then the Hilbert-Poincaré series is computed w.r.t. these weights $w$ (by default all weights are set to 1 ). In computation through SINGULAR we can put $v_{2}=1$ and halve the degrees of all $K(2)^{*}$-generators.

Morava $K(2)^{*}(B G)$-rings for the groups under consideration are as follows.

Proposition 2.1. Let $G_{i}$ be one of the groups $G_{34}, \cdots, G_{41}$. Then

$$
K(2)^{*}\left(B G_{i}\right) \cong K(2)^{*}\left[a, b, c, x_{1}, x_{2}, y_{1}, y_{2}, T\right] / I_{i},
$$

where $|a|=|b|=|c|=\left|x_{1}\right|=\left|y_{1}\right|=2,\left|x_{2}\right|=\left|y_{2}\right|=|T|=4$ and the relations ideal $I_{i}$ is as follows
$I_{34}=\left(a^{4}, b^{4}, c^{4}, c+x_{1}+v x_{2}^{2}+v^{3} x_{1}{ }^{2} x_{2}^{4}, y_{1}+c+v y_{2}^{2}+v^{3} y_{1}{ }^{2} y_{2}{ }^{4}, c\left(c+x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+\right.\right.$ $\left.v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}^{4}+b^{2}+b c, v^{2} x_{2}^{4}+a^{2}+a c,\left(c+x_{1}+v c^{2} x_{2}\right)(b+$ $\left.y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+$ $\left.x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right)$;
$I_{35}=\left(a^{4}, b^{4}, c^{4}, c+x_{1}+v x_{2}^{2}+v^{3} x_{1}{ }^{2} x_{2}^{4}, y_{1}+v y_{2}{ }^{2}+v^{3} y_{1}{ }^{2} y_{2}{ }^{4}, c\left(c+x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+\right.\right.$ $\left.v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}^{4}+b^{2}+b c+c^{2}, v^{2} x_{2}^{4}+a^{2}+a c,\left(c+x_{1}+v c^{2} x_{2}\right)(b+$ $\left.y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+$ $\left.x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right)$;
$I_{36}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+b, y_{1}+v y_{2}^{2}+v^{3} y_{1}{ }^{2} y_{2}{ }^{4}+c, c\left(c+x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+\right.\right.$ $\left.v c^{2} y_{2}\right), a\left(a+y_{1}+v a^{2} y_{2}\right), b\left(b+x_{1}+v b^{2} x_{2}\right), v^{2} y_{2}{ }^{4}+a^{2}+a c, v^{2} x_{2}^{4}+c^{2}+b c,\left(c+x_{1}+v c^{2} x_{2}\right)(a+$ $\left.y_{1}+v a^{2} y_{2}\right)+v a^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(b+x_{1}+v b^{2} x_{2}\right)+v b^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+$ $\left.x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(b+x_{1}+v b^{2} x_{2}\right)+v b^{3} x_{2}\left(c+y_{1}\right), T\left(a+y_{1}+v a^{2} y_{2}\right)+v a^{3} y_{2}\left(c+x_{1}\right), c T\right) ;$
$I_{37}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+b+c+v b^{2} c^{2}, y_{1}+v y_{2}{ }^{2}+v^{3} y_{1}{ }^{2} y_{2}{ }^{4}, c\left(c+x_{1}+v c^{2} x_{2}\right), c(c+\right.$ $\left.y_{1}+v c^{2} y_{2}\right), a\left(a+y_{1}+v a^{2} y_{2}\right), b\left(b+x_{1}+v b^{2} x_{2}\right), v^{2} y_{2}{ }^{4}+a^{2}+a c+c^{2}, v^{2} x_{2}{ }^{4}+b c,\left(c+x_{1}+v c^{2} x_{2}\right)(a+$ $\left.y_{1}+v a^{2} y_{2}\right)+v a^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(b+x_{1}+v b^{2} x_{2}\right)+v b^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+$ $\left.x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(b+x_{1}+v b^{2} x_{2}\right)+v b^{3} x_{2}\left(c+y_{1}\right), T\left(a+y_{1}+v a^{2} y_{2}\right)+v a^{3} y_{2}\left(c+x_{1}\right), c T\right)$;
$I_{38}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+a, y_{1}+v y_{2}{ }^{2}+v^{3} y_{1}^{2} y_{2}{ }^{4}+a+b+c+v a^{2} b^{2}+v b^{2} c^{2}+v a^{2} c^{2}, c(c+\right.$ $\left.x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}^{4}+a^{2}+b c+v a b c^{3}, v^{2} x_{2}^{4}+c^{2}+$ $a c,\left(c+x_{1}+v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}(c+$ $\left.\left.y_{1}+v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right)$;
$I_{39}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+b+c+v b^{2} c^{2}, y_{1}+v y_{2}^{2}+v^{3} y_{1}^{2} y_{2}{ }^{4}+c, c\left(c+x_{1}+v c^{2} x_{2}\right), c(c+\right.$ $\left.y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}{ }^{4}+b^{2}+b c, v^{2} x_{2}{ }^{4}+a^{2}+b^{2}+a c+v a b c^{3},\left(c+x_{1}+\right.$ $\left.v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+\right.$ $\left.\left.v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right) ;$
$I_{40}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+b+c+v b^{2} c^{2}, y_{1}+v y_{2}^{2}+v^{3} y_{1}^{2} y_{2}^{4}, c\left(c+x_{1}+v c^{2} x_{2}\right), c(c+\right.$ $\left.y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}^{4}+b^{2}+c^{2}+b c, v^{2} x_{2}^{4}+a^{2}+b^{2}+a c+v a b c^{3},(c+$ $\left.x_{1}+v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+\right.$ $\left.\left.v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right) ;$
$I_{41}=\left(a^{4}, b^{4}, c^{4}, x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}+b+c+v b^{2} c^{2}, y_{1}+v y_{2}^{2}+v^{3} y_{1}^{2} y_{2}^{4}+a+b+c+v a^{2} b^{2}+\right.$ $v b^{2} c^{2}+v a^{2} c^{2}, c\left(c+x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}^{4}+a^{2}+$ $b c+v a b c^{3}, v^{2} x_{2}^{4}+a^{2}+b^{2}+a c+v a b c^{3},\left(c+x_{1}+v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)(a+$ $\left.x_{1}+v a^{2} x_{2}\right)+v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+$ $\left.v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right) ;$

Morava rings $K(s)^{*}(B G)$ for the groups $D, Q, Q D, S D$ are calculated in [6, 2]. In particular, one has

Proposition 2.2. Let $G$ be one of the groups $D, Q, S D$. Then $K(2)^{*}(B G) \cong K(2)^{*}\left[c, x, c_{2}\right] / I_{G}$, where $|c|=|x|=2,\left|c_{2}\right|=4$ and the relations ideal $I_{G}$ is as follows

$$
\begin{aligned}
I_{D}= & \left(c^{4}, x^{4}, v c c_{2}{ }^{2}+v c^{3} c_{2}, v^{42} c_{2}{ }^{64}+c x+x^{2}, v x c_{2}{ }^{2}+v x c^{2} c_{2}+v^{84} c_{2}{ }^{127}+\right. \\
& \left.v^{82} c_{2}{ }^{124}+v^{78} c_{2}^{118}+v^{70} c_{2}{ }^{106}+v^{54} c_{2}{ }^{82}+v^{22} c_{2}{ }^{34}\right) ; \\
I_{Q}= & \left(c^{4}, x^{4}, v c c_{2}{ }^{2}+v c^{3} c_{2}+c^{2}, v^{42} c_{2}{ }^{64}+c x+x^{2}, v x c_{2}{ }^{2}+v x c^{2} c_{2}+v^{84} c_{2}{ }^{127}+\right. \\
& \left.v^{82} c_{2}{ }^{124}+v^{78} c_{2}^{118}+v^{70} c_{2}{ }^{106}+v^{54} c_{2}{ }^{82}+v^{22} c_{2}{ }^{34}+c x\right) ; \\
I_{S D}= & \left(c^{4}, x^{4}, v c c_{2}{ }^{2}+v c^{3} c_{2}+c x, v^{42} c_{2}{ }^{64}+c x+x^{2}, v x c_{2}{ }^{2}+v x c^{2} c_{2}+v^{84} c_{2}{ }^{127}+\right. \\
& \left.v^{82} c_{2}{ }^{124}+v^{78} c_{2}{ }^{118}+v^{70} c_{2}{ }^{106}+v^{54} c_{2}{ }^{82}+v^{22} c_{2}{ }^{34}+c x\right) .
\end{aligned}
$$

Proposition 2.3. Let $Q D$ be the quasi-dihedral group of order 32 as above. Then $K(2)^{*}(B G) \cong$ $K(2)^{*}\left[x, y, c_{1}, c_{2}\right] / I_{Q D}$, where $|x|=|y|=\left|c_{1}\right|=2,\left|c_{2}\right|=4$ and the relations ideal $I_{Q D}$ is

$$
\left(x^{4}, y^{4}, x\left(c_{1}+x+v x^{2} c_{2}\right), y\left(c_{1}+y+v y^{2} c_{2}\right),\left(c_{1}+x+v x^{2} c_{2}\right)\left(c_{1}+y+v y^{2} c_{2}\right), x+v^{21} c_{2}{ }^{32}\right)
$$

Corollary 2.4. For $G=D, Q, S D$ the Hilbert first series $Q(t)$ and the Hilbert-Poincaré Series $H P(t)$ of $K(2)^{*}(B G)$ w.r.t. $w_{p}$ ordering $(c, x, z)(1,1,2)$ is equal to

$$
\begin{aligned}
Q(t)= & 1-t^{3}-2 t^{4}+t^{6}+t^{7}+t^{8}-t^{10}-t^{72}+2 t^{71}-t^{70}-t^{68}+3 t^{66}-2 t^{65}= \\
& (1-t)^{3}(1+t)\left(1+2 t+4 t^{2}+5 t^{3}+5 t^{4}+4 t^{5}+3 t^{6}+\sum_{i=7}^{64} 2 t^{i}+t^{66}+t^{68}\right) \\
H P(t)= & Q(t) /(1-t)^{2}\left(1-t^{2}\right)= \\
& 1+2 t+4 t^{2}+5 t^{3}+5 t^{4}+4 t^{5}+3 t^{6}+\sum_{i=7}^{64} 2 t^{i}+t^{66}+t^{68}
\end{aligned}
$$

One can read off the $K(2)^{*}$ basis of $K(2)^{*}(B G)$ w.r.t the ordering we fixed. See for instance [6] page 3712. Again, we can put $v_{2}=1$ and halve the degrees. Then by counting the degrees of basis elements one can compute the coefficients of $H P(t)$.

Instead we used the singular codes to compute $H P(t)$ and at the same time checked the calculations in [6].

Similarly one has for $K(2)^{*}(B Q D)$.
Corollary 2.5. The Hilbert first series $Q(t)$ and the Hilbert-Poincaré Series $H P(t)$ of $K(2)^{*}(B Q D)$ w.r.t. $w_{p}$ ordering $\left(c_{1}, x, y, c_{2}\right)(1,1,1,2)$ is equal to

$$
\begin{aligned}
Q(t)= & (t-1)^{4}\left(t^{32}+1\right)\left(t^{16}+1\right)\left(t^{8}+1\right)\left(t^{4}+1\right)\left(t^{2}+1\right)\left(t^{4}+3 t^{3}+3 t^{2}+3 t+1\right)(t+1) \\
H P(t)= & Q(t) /(1-t)^{3}\left(1-t^{2}\right)= \\
& \left(1+t^{32}\right)\left(1+t^{16}\right)\left(1+t^{8}\right)\left(1+t^{4}\right)\left(1+t^{2}\right)\left(1+3 t+3 t^{2}+3 t^{3}+t^{4}\right)
\end{aligned}
$$

Consider now the groups $G_{34}, \cdots, G_{41}$. All eight groups have $K(2)^{*}$-Euler characteristic 184 .
Corollary 2.6. The Hilbert first series $Q(t)$ and the Hilbert-Poincaré Series $H P(t)$ of $K(2)^{*}(B G)$, for the groups $G_{34}, \cdots, G_{41}$, w.r.t. $w_{p}$ ordering

$$
\left(a, b, c, y_{1}, x_{1}, y_{2}, x_{2}, T\right),(1,1,1,1,1,2,2,2),
$$

are given by the following table

$$
\begin{aligned}
& G_{34}, G_{35}, G_{39}, G_{40}: \\
& Q(t)=(1-t)^{8}(1+t)^{3}\left(1+t^{2}\right)\left(1+5 t+13 t^{2}+19 t^{3}+21 t^{4}+16 t^{5}+11 t^{6}+5 t^{7}+t^{8}\right) ; \\
& H P(t)=1+5 t+14 t^{2}+24 t^{3}+34 t^{4}+35 t^{5}+32 t^{6}+21 t^{7}+12 t^{8}+5 t^{9}+t^{10} ; \\
& \\
& G_{36}, G_{37}, G_{38}, G_{41}: \\
& (1-t)^{8}(1+t)^{3}\left(1+5 t+14 t^{2}+25 t^{3}+34 t^{4}+35 t^{5}+31 t^{6}+21 t^{7}+12 t^{8}+5 t^{9}+t^{10}\right) ; \\
& 1+5 t+14 t^{2}+25 t^{3}+34 t^{4}+35 t^{5}+31 t^{6}+21 t^{7}+12 t^{8}+5 t^{9}+t^{10} .
\end{aligned}
$$

## Acknowledgments

The authors are very grateful to the referee for numerous important suggestions which have been very useful for improving the paper.

## References

[1] M. Bakuradze, Morava $K$-theory rings for the modular groups in Chern classes, $K$-theory, 38, 2(2008), 87-94.
[2] M. Bakuradze, Morava K-theory rings for a quasi-dihedral group in Chern classes, Proc. Steklov Inst. of Math. 252(2006), 23-29 .
[3] M. Bakuradze, Induced representations, Transferred Chern classes and Morava rings $K(s)^{*}(B G)$ : some calculations, Proc. Steklov Inst. of Math. 275(2011), 160-168 .
[4] M. Bakuradze and N. Gachechiladze, Morava K-theory rings of the extensions of $C_{2}$ by the products of cyclic 2-groups, Moscow Math. J., 16(4) (2016), 603-619.
[5] M. Bakuradze and M. Jibladze, Morava K-theory rings of groups $G_{38}, \ldots, G_{41}$ of order 32, J. K-Theory, 13(2014), 171-198
[6] M. Bakuradze and V.V. Vershinin, Morava K-theory rings for the dihedral, semi-dihedral and generalized quaternion groups in Chern Classes, Proc. Amer. Math. Soc., 134(2006), 37073714.
[7] M. Brunetti, Morava K-theory of p-groups with cyclic maximal subgroups and other related p-groups, K-Theory, 24, (2001), 385-395.
[8] M. Hall and J.K. Senior, The groups of order $2^{n}$, $n \leq 6$, The Macmillan Co., New York; Collier-Macmillan, Ltd., London 1964.
[9] M. Hopkins, N. Kuhn and D. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc., 13, 3(2000), 553-594.
[10] B. Schuster, Morava K-theory of groups of order 32, Algebraic and Geometric Topology, 11(2011), 503-521.
[11] W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular 4-0-2 - A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2015).
[12] B. Schuster, Morava K-theory of classifying spaces, Habilitationsschrift, 2006.
[13] B. Schuster and N. Yagita, On Morava K-theory of extraspecial 2-groups, Proc. Amer. Math. Soc., 132, 4(2004), 1229-1239.
[14] M. Tezuka and N. Yagita, Homotopy theory and related topics(Kinosaki, 1988), 57-69, Lecture Notes in Math. 1418, Springer, Berlin, 1990.
[15] N. Yagita, Cohomology for groups of $\operatorname{rank}_{p}(G)=2$ and Brown-Peterson cohomology, J. Math. Soc. Japan 45, 4(1993), 627-644.
[16] N. Yagita, Note on BP-theory for extensions of cyclic groups by elementary abelian p-groups, Kodai Math. J. 20, 2(1997), 79-84.


[^0]:    *The authors where supported by Shota Rustaveli National Science Foundation Grant 217-614 and CNRS PICS Grant 04/02

