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Abstract

In this note we analyze Morava K-theory rings of classifying spaces of some groups of order 32
via Hilbert-Poincaré polynomials.
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1 Preliminaries

Let R = ⊕iRi be a N-graded k-algebra, all Ri be vector spaces over a field k. Then the series
HP (R, t) =

∑
i dimkRit

i is called the Hilbert-Poincaré series of R.
If R is generated by h homogeneous elements of positive degrees d1, · · · , dh, then the sum of the

Hilbert-Poincaré series is a rational fraction

HP (R, t) =
Q(t)∏h

i=1(1− tdi)
,

where Q is a polynomial with integer coefficients.
In this paper we analyze the Morava K-theory rings K(2)∗(BG) at 2 of some groups of or-

der 32. In each example the ring K(2)∗(BG) is presented as a quotient of a polynomial ring
K(s)∗[x1, x2, · · · , xm] by an ideal I generated by explicit polynomials. In this situation the naive
definition of HP (t) does not work as there are the elements of negative degree in the ring of coef-
ficients K(2)∗, the graded field F2[v2, v

−1
2 ], with |v2| = −6. Let degree of K(2)∗ be zero. Then the

relations ideal I is not homogeneous with respect to variables x1, . . . , xn, hence the quotient ring
is not graded (but filtered) with respect to cohomological degree. One can replace the ideal I by
some homogeneous ideal to reduce the definition to graded algebra case and measure how strong is
the Hilbert-Poincaré polynomial in distinguishing some K(2)∗(BG)’s.

We use the following definitions of [11]. Let I be an ideal of a polynomial ring k[x1, · · · , xn]
over a field k, and let > be a global monomial ordering. For instance

(i) Graded reverse lexicographical ordering >dp (also denoted by degrevlex):

xα >dp x
β ⇔ deg xα > deg xβ

or deg xα = deg xβ and ∃1 ≤ i ≤ n,
αn = βn, · · · , αi+1 = βi+1, αi < βi.
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(ii) Graded lexicographical ordering >Dp (also denoted by deglex):

xα >Dp x
β ⇔ deg xα > deg xβ

or deg xα = deg xβ and ∃1 ≤ i ≤ n,
α1 = β1, · · · , αi−1 = βi−1, αi > βi.

Given a vector w = (w1, · · · , wn) of integers, we define a weighted degree of xα by

w deg(xα) := w1α1 + · · ·wnαn,

that is, the variable xi has degree wi. For a polynomial f =
∑
α aαx

α we define thee weighted
degree,

w deg(f) := max{w deg(xα) | aα 6= 0}.

Using the weighted degree in (i), respectively in (ii), with all wi > 0, instead of the usual
degree, we obtain the weighted reverse lexicographical ordering, wp(w1, · · · , wn), respectively the
lexicographical ordering, Wp(w1, · · · , wn).

For k[x1, · · · , xn]/I, a filtered algebra, the Hilbert-Poincaré series w.r.t > is defined as follows.
Replace I by its leading ideal L(I) generated by leading terms of the Gröbner basis of I. Then the
ring k[x1, · · · , xn]/L(I) is a graded ring. By definition

HP (t, k[x1, · · · , xn]/I) = HP (t, k[x1, · · · , xn]/L(I)) w.r.t. > .

Below, we compute the Hirbert-Poincaré series HP (t) for K(2)∗(BG) for some groups G with
|G| = 32. In particular, there are groups G such that the K(2)-Euler characteristics χ2,2(G) are
same but HP (t) are different.

2 Hilbert-Poincaŕe polynomials

Note that in the case of a finite group G the ring K(s)∗(BG) is finite dimensional vector space
over K(s)∗(pt), so that the Hilbert-Poincaré series we defined is the polynomial. There exist 51
non-isomorphic groups of order 32. In the monograph [8] these groups are numbered by 1, · · · , 51.
Some of these groups are classical and named. We consider the following examples
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Rings K(s)∗(BG) 105

G34 = 〈a,b, c | a4 = b4 = c2 = [a,b] = 1, cac = a−1, cbc = b−1〉,
G35 = 〈a,b, c | a4 = b4 = [a,b] = 1, c2 = a2, cac−1 = a−1, cbc−1 = b−1〉.
G36 = 〈a,b, c | a4 = b4 = c2 = [b, c] = 1,a−1ba = b−1, cac = a−1〉,
G37 = 〈a,b, c | a4 = c2 = d2 = [b, c] = 1,d = [a, c],b2 = a2,bab−1 = a−1〉,
G38 = 〈a,b, c | a4 = b2 = c4 = [a,b] = 1, cac−1 = ac2, cbc−1 = a2b〉,
G39 = 〈a,b, c | a4 = b4 = c2 = [a,b] = 1, cac = a3, cbc = a2b3〉,
G40 = 〈a,b, c | a4 = b4 = 1, c2 = b2, [a,b] = 1, c−1ac = a3, c−1bc = a2b3〉,
G41 = 〈a,b, c | a4 = b4 = c2 = [a,b] = 1, cac = a3b2, cbc = a2b〉,
D = 〈a,b, | a16 = 1,b2 = 1,bab−1 = a−1〉, the dihedral group,

Q = 〈a,b, | a16 = 1,b2 = a8,bab−1 = a−1〉, the generalized quaternion group,

SD = 〈a,b, | a16 = 1,b2 = 1,bab−1 = a7〉, the semi-dihedral group,

QD = 〈a,b, | a16 = b2 = 1,bab−1 = a9〉, the quasi-dihedral group.

Explicit calculations of Morava K(s)∗(BG) rings for the groups of order 32 are scattered in
the literature (see the references [1–7], [9–14]). For ease of presentation we set s = 2, v2 = v and
discuss K(2)∗(BG) for the twelve groups defined above. It is proved in [4], [5] that for the groups
G34, · · ·G41 the ring K(s)∗(BG) is the quotient of a polynomial ring in 6 variables over the field
K(s)∗(pt) = F2[vs, v

−1
s ] by an ideal generated by 16 explicit polynomials (see Proposition 2.1).

Let χs,2 be K(s)∗-Euler-characteristic of G, the difference between the K(s)∗-ranks of the even-
dimensional and the odd-dimensional part of K(s)∗(BG). It is proved in [10] that K(s)odd(BG)
turns out to be trivial for all groups of order 32. It follows χs,2 = rankK(s)∗(K(s)∗(BG)) for the
groups we are considering. The latter can be calculated [9] in terms of abelian subgroups of G and
Möbius function as follows

χs,2 =
∑
A<G

|A|
|G|

µG(A)χs,2(A), (1)

where the sum is over all abelian subgroups A < G and µG is a Möbius function defined recursively
by ∑

A<A′

µG(A′) = 1,

where the sum is over all abelian subgroups A′ < G which contain A. (In particular, µG(A) = 1
when A is maximal.)

For our examples these calculations are known by Brunetti [7] and Schuster [10]
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χ2,2(G) =


184 for G = G34, · · · , G41,

142 for G = D,Q, SD,

352 for G = QD.

(2)

One can define the Poincaré polynomial P (t) of G by using the cyclical gradings of K(s)∗-
modules: recall the Morava K-theory is a periodic cohomology theory, the coefficient ring K(s)∗(pt)
is the graded field F2[vs, v

−1
s ], with |vs| = −2(2s − 1). Therefore as K(s)∗-module K(s)∗(BG) is

periodically graded. For s = 2, the unit v2 is of degree −6 and assigning degrees 0, 2, or 4 to each
element of K(2)∗(BG), the Poincaré polynomial of finite group G is defined as

P (t) = 1 + c0t
0 + c2t

2 + c4t
4, (3)

where ci = rankk(2)∗K(2)i mod 6.

One immediate consequence of our results (the corollaries 2.4, 2.5 and 2.6) is the following

P (t) =


1 + 61(1 + t2 + t4) for G = G34, · · · , G41,

1 + 47(1 + t2 + t4) for G = D,Q, SD,

1 + 117(1 + t2 + t4) for G = QD.

(4)

Actually (4) is easily predicted: it says that the for the groups under consideration the elements
of K(2)∗(BG) are equally distributed in dimensions 0, 2, 4 w.r.t the cyclic grading. Surely this was
already known to N. Yagita. On the other hand the sum of all coefficients equals χ2,2 in (2).

One can conclude that naive Poincaré series P (t) w.r.t cyclic grading of K(2)∗(BG) can’t see
the difference between the groups in (4) with equal K(2)∗-Euler characteristics. Therefore we will
ignore the cyclic grading.

We are particularly interesting in issues related to the comparison of the ring structures. Namely,
suppose that for groups G1 and G2 the corresponding Morava rings are presented in terms of
generators and relations as

Ri ≡ K(s)∗(BGi) = K(s)∗[x1, · · · , xn]/Ii.

Then one can ask how ”close” the ring structures in R1 and R2 are? To see the difference in
the ring structures we need the Hilbert-Poincaré series defined above.

For instance in Corollary 2.6 we fix a monomial ordering of the generators of Morava rings and
compute the corresponding series HP (t) for the groups G34, G35, G39, G40 and G36, G37, G38, G41

respectively.

We use SINGULAR code hilb [11]. It computes the Hilbert series Q(t) and the Hilbert-Poincaré
polynomials HP (t) = Q(t)/

∏
(1 − twi) defined above. If a weight vector w is given, then the

Hilbert-Poincaré series is computed w.r.t. these weights w (by default all weights are set to 1). In
computation through SINGULAR we can put v2 = 1 and halve the degrees of all K(2)∗-generators.

Morava K(2)∗(BG)-rings for the groups under consideration are as follows.
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Proposition 2.1. Let Gi be one of the groups G34, · · · , G41. Then

K(2)∗(BGi) ∼= K(2)∗[a, b, c, x1, x2, y1, y2, T ]/Ii,

where |a| = |b| = |c| = |x1| = |y1| = 2, |x2| = |y2| = |T | = 4 and the relations ideal Ii is as follows

I34 = (a4, b4, c4, c+ x1 + vx2
2 + v3x1

2x2
4, y1 + c+ vy2

2 + v3y1
2y2

4, c(c+ x1 + vc2x2), c(c+ y1 +
vc2y2), a(a + x1 + va2x2), b(b + y1 + vb2y2), v2y2

4 + b2 + bc, v2x2
4 + a2 + ac, (c + x1 + vc2x2)(b +

y1 + vb2y2) + vb3T, (c+ y1 + vc2y2)(a+ x1 + va2x2) + va3T, T 2 + Tx1y1 + x2y1(c+ y1 + vc2y2) +
x1y2(c+ x1 + vc2x2), T (a+ x1 + va2x2) + va3x2(c+ y1), T (b+ y1 + vb2y2) + vb3y2(c+ x1), cT );

I35 = (a4, b4, c4, c + x1 + vx2
2 + v3x1

2x2
4, y1 + vy2

2 + v3y1
2y2

4, c(c + x1 + vc2x2), c(c + y1 +
vc2y2), a(a+x1 + va2x2), b(b+ y1 + vb2y2), v2y2

4 + b2 + bc+ c2, v2x2
4 +a2 +ac, (c+x1 + vc2x2)(b+

y1 + vb2y2) + vb3T, (c+ y1 + vc2y2)(a+ x1 + va2x2) + va3T, T 2 + Tx1y1 + x2y1(c+ y1 + vc2y2) +
x1y2(c+ x1 + vc2x2), T (a+ x1 + va2x2) + va3x2(c+ y1), T (b+ y1 + vb2y2) + vb3y2(c+ x1), cT );

I36 = (a4, b4, c4, x1 + vx2
2 + v3x1

2x2
4 + b, y1 + vy2

2 + v3y1
2y2

4 + c, c(c+ x1 + vc2x2), c(c+ y1 +
vc2y2), a(a + y1 + va2y2), b(b + x1 + vb2x2), v2y2

4 + a2 + ac, v2x2
4 + c2 + bc, (c + x1 + vc2x2)(a +

y1 + va2y2) + va3T, (c+ y1 + vc2y2)(b+ x1 + vb2x2) + vb3T, T 2 + Tx1y1 + x2y1(c+ y1 + vc2y2) +
x1y2(c+ x1 + vc2x2), T (b+ x1 + vb2x2) + vb3x2(c+ y1), T (a+ y1 + va2y2) + va3y2(c+ x1), cT );

I37 = (a4, b4, c4, x1 +vx2
2 +v3x1

2x2
4 +b+c+vb2c2, y1 +vy2

2 +v3y1
2y2

4, c(c+x1 +vc2x2), c(c+
y1 + vc2y2), a(a+ y1 + va2y2), b(b+x1 + vb2x2), v2y2

4 +a2 +ac+ c2, v2x2
4 + bc, (c+x1 + vc2x2)(a+

y1 + va2y2) + va3T, (c+ y1 + vc2y2)(b+ x1 + vb2x2) + vb3T, T 2 + Tx1y1 + x2y1(c+ y1 + vc2y2) +
x1y2(c+ x1 + vc2x2), T (b+ x1 + vb2x2) + vb3x2(c+ y1), T (a+ y1 + va2y2) + va3y2(c+ x1), cT );

I38 = (a4, b4, c4, x1+vx2
2+v3x1

2x2
4+a, y1+vy2

2+v3y1
2y2

4+a+b+c+va2b2+vb2c2+va2c2, c(c+
x1 +vc2x2), c(c+y1 +vc2y2), a(a+x1 +va2x2), b(b+y1 +vb2y2), v2y2

4 +a2 +bc+vabc3, v2x2
4 +c2 +

ac, (c+x1+vc2x2)(b+y1+vb2y2)+vb3T, (c+y1+vc2y2)(a+x1+va2x2)+va3T, T 2+Tx1y1+x2y1(c+
y1+vc2y2)+x1y2(c+x1+vc2x2), T (a+x1+va2x2)+va3x2(c+y1), T (b+y1+vb2y2)+vb3y2(c+x1), cT );

I39 = (a4, b4, c4, x1+vx2
2+v3x1

2x2
4+b+c+vb2c2, y1+vy2

2+v3y1
2y2

4+c, c(c+x1+vc2x2), c(c+
y1 +vc2y2), a(a+x1 +va2x2), b(b+y1 +vb2y2), v2y2

4 +b2 +bc, v2x2
4 +a2 +b2 +ac+vabc3, (c+x1 +

vc2x2)(b+ y1 + vb2y2) + vb3T, (c+ y1 + vc2y2)(a+ x1 + va2x2) + va3T, T 2 + Tx1y1 + x2y1(c+ y1 +
vc2y2)+x1y2(c+x1 +vc2x2), T (a+x1 +va2x2)+va3x2(c+y1), T (b+y1 +vb2y2)+vb3y2(c+x1), cT );

I40 = (a4, b4, c4, x1 +vx2
2 +v3x1

2x2
4 +b+c+vb2c2, y1 +vy2

2 +v3y1
2y2

4, c(c+x1 +vc2x2), c(c+
y1 +vc2y2), a(a+x1 +va2x2), b(b+y1 +vb2y2), v2y2

4 + b2 + c2 + bc, v2x2
4 +a2 + b2 +ac+vabc3, (c+

x1 +vc2x2)(b+y1 +vb2y2)+vb3T, (c+y1 +vc2y2)(a+x1 +va2x2)+va3T, T 2 +Tx1y1 +x2y1(c+y1 +
vc2y2)+x1y2(c+x1 +vc2x2), T (a+x1 +va2x2)+va3x2(c+y1), T (b+y1 +vb2y2)+vb3y2(c+x1), cT );

I41 = (a4, b4, c4, x1 + vx2
2 + v3x1

2x2
4 + b+ c+ vb2c2, y1 + vy2

2 + v3y1
2y2

4 + a+ b+ c+ va2b2 +
vb2c2 + va2c2, c(c+ x1 + vc2x2), c(c+ y1 + vc2y2), a(a+ x1 + va2x2), b(b+ y1 + vb2y2), v2y2

4 + a2 +
bc+ vabc3, v2x2

4 + a2 + b2 + ac+ vabc3, (c+x1 + vc2x2)(b+ y1 + vb2y2) + vb3T, (c+ y1 + vc2y2)(a+
x1 + va2x2) + va3T, T 2 + Tx1y1 + x2y1(c+ y1 + vc2y2) + x1y2(c+ x1 + vc2x2), T (a+ x1 + va2x2) +
va3x2(c+ y1), T (b+ y1 + vb2y2) + vb3y2(c+ x1), cT );

Morava rings K(s)∗(BG) for the groups D,Q,QD,SD are calculated in [6, 2]. In particular,
one has
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Proposition 2.2. Let G be one of the groups D,Q, SD. Then K(2)∗(BG) ∼= K(2)∗[c, x, c2]/IG,
where |c| = |x| = 2, |c2| = 4 and the relations ideal IG is as follows

ID =(c4, x4, vcc2
2 + vc3c2, v

42c2
64 + cx+ x2, vxc2

2 + vxc2c2 + v84c2
127+

v82c2
124 + v78c2

118 + v70c2
106 + v54c2

82 + v22c2
34);

IQ =(c4, x4, vcc2
2 + vc3c2 + c2, v42c2

64 + cx+ x2, vxc2
2 + vxc2c2 + v84c2

127+

v82c2
124 + v78c2

118 + v70c2
106 + v54c2

82 + v22c2
34 + cx);

ISD =(c4, x4, vcc2
2 + vc3c2 + cx, v42c2

64 + cx+ x2, vxc2
2 + vxc2c2 + v84c2

127+

v82c2
124 + v78c2

118 + v70c2
106 + v54c2

82 + v22c2
34 + cx).

Proposition 2.3. Let QD be the quasi-dihedral group of order 32 as above. Then K(2)∗(BG) ∼=
K(2)∗[x, y, c1, c2]/IQD, where |x| = |y| = |c1| = 2, |c2| = 4 and the relations ideal IQD is

(x4, y4, x(c1 + x+ vx2c2), y(c1 + y + vy2c2), (c1 + x+ vx2c2)(c1 + y + vy2c2), x+ v21c2
32).

Corollary 2.4. For G = D,Q, SD the Hilbert first series Q(t) and the Hilbert-Poincaré Series
HP (t) of K(2)∗(BG) w.r.t. wp ordering (c, x, z)(1, 1, 2) is equal to

Q(t) =1− t3 − 2t4 + t6 + t7 + t8 − t10 − t72 + 2t71 − t70 − t68 + 3t66 − 2t65 =

(1− t)3(1 + t)(1 + 2t+ 4t2 + 5t3 + 5t4 + 4t5 + 3t6 +
64∑
i=7

2ti + t66 + t68);

HP (t) =Q(t)/(1− t)2(1− t2) =

1 + 2t+ 4t2 + 5t3 + 5t4 + 4t5 + 3t6 +
64∑
i=7

2ti + t66 + t68.

One can read off the K(2)∗ basis of K(2)∗(BG) w.r.t the ordering we fixed. See for instance [6]
page 3712. Again, we can put v2 = 1 and halve the degrees. Then by counting the degrees of basis
elements one can compute the coefficients of HP (t).

Instead we used the singular codes to compute HP (t) and at the same time checked the calcu-
lations in [6].

Similarly one has for K(2)∗(BQD).

Corollary 2.5. The Hilbert first series Q(t) and the Hilbert-Poincaré Series HP (t) of K(2)∗(BQD)
w.r.t. wp ordering (c1, x, y, c2)(1, 1, 1, 2) is equal to

Q(t) =(t− 1)4(t32 + 1)(t16 + 1)(t8 + 1)(t4 + 1)(t2 + 1)(t4 + 3t3 + 3t2 + 3t+ 1)(t+ 1);

HP (t) =Q(t)/(1− t)3(1− t2) =

(1 + t32)(1 + t16)(1 + t8)(1 + t4)(1 + t2)(1 + 3t+ 3t2 + 3t3 + t4).
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Consider now the groups G34, · · · , G41. All eight groups have K(2)∗-Euler characteristic 184.

Corollary 2.6. The Hilbert first series Q(t) and the Hilbert-Poincaré Series HP (t) of K(2)∗(BG),
for the groups G34, · · · , G41, w.r.t. wp ordering

(a, b, c, y1, x1, y2, x2, T ), (1, 1, 1, 1, 1, 2, 2, 2),

are given by the following table

G34, G35, G39, G40 :

Q(t) = (1− t)8(1 + t)3(1 + t2)(1 + 5t+ 13t2 + 19t3 + 21t4 + 16t5 + 11t6 + 5t7 + t8);

HP (t) = 1 + 5t+ 14t2 + 24t3 + 34t4 + 35t5 + 32t6 + 21t7 + 12t8 + 5t9 + t10;

G36, G37, G38, G41 :

(1− t)8(1 + t)3(1 + 5t+ 14t2 + 25t3 + 34t4 + 35t5 + 31t6 + 21t7 + 12t8 + 5t9 + t10);

1 + 5t+ 14t2 + 25t3 + 34t4 + 35t5 + 31t6 + 21t7 + 12t8 + 5t9 + t10.
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